100	-2-2-2		
Reg. No. :			

Question Paper Code: 51315

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

First Semester

Civil Engineering

MA 3151 - MATRICES AND CALCULUS

(Common to : All Branches (Except B.E. Marine Engineering))

(Also Common to PTMA 3151-Matrices and calculus for B.E. (Part-Time)
First Semester-All Branches-Regulations 2023)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. If λ is an eigenvalue of a matrix A, then prove that λ^2 is an eigenvalue of A^2 .
- 2. If $x = [-1, 0, 1]^T$ is the eigenvector of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$, then find the corresponding eigen value.
- 3. Sketch the graph of the function f(x)=2.0-0.4x and find the domain of the function.
- 4. Differentiate $y = x \tan(\sqrt{x})$ with respect to x.
- 5. Verify Euler's theorem for the function $u = x^2 + y^2 + 2xy$.
- 6. If u = x y, v = y z, w = z x, then find the Jacobian $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
- 7. What is wrong with the equation $\int_{-2}^{1} \left[\frac{1}{x^4} \right] dx = \int_{-2}^{1} \left[x^{-4} \right] dx = \left[\frac{x^{-3}}{-3} \right]_{-2}^{1} = -\frac{3}{8}.$
- 8. Evaluate $\int_{-1}^{1} \left[\frac{\tan x}{1 + x^2 + x^4} \right] dx$ by using the concept of odd and even functions.

- 9. Evaluate $\int_{1}^{2} \int_{0}^{x^2} [x] dy dx$.
- 10. Write the integral equation for the regions $x \ge 0$, $y \ge 0$, $z \ge 0$, $z \ge 0$, $z \ge 0$ by triple integration.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Find the eigenvalues and eigenvectors of the given matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}.$ (8)
 - (ii) Using Cayley-Hamilton theorem, find the inverse of the given

matrix
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$
. (8)

Or

- (b) Reduce the quadratic form $3x_1^2 + 5x_2^2 + 3x_3^2 2x_2x_3 + 2x_3x_1 2x_1x_2$ to a canonical form by orthogonal reduction. (16)
- 12. (a) (i) Find the value of $\lim_{x\to 2} \left[\frac{x^2 2}{x^3 3x + 5} \right]^2$. (6)
 - (ii) Find the local maximum and minimum values of the function $f(x) = x + 2 \sin x$ in the interval $0 \le x \le 2\pi$. (10)

Or

- (b) (i) Find an equation of the tangent line to the curve $y = \frac{e^x}{(1+x^2)}$ at the point (1,e/2).
 - (ii) Find the absolute maximum and absolute minimum values of the function $f(x) = \log[x^2 + x + 1]$ in the interval [-1,1]. (8)

- 13. (a) (i) If $u = \log[x^2 + y^2 + z^2]$ then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$? (8)
 - (ii) The temperature at any point (x, y, z) in space is given by $T = 400 xyz^2$. Find the maximum temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.

Or

- (b) (i) Expand $f(x,y) = e^{x+y}$ about the point (0,0) in powers of x and y upto third degree terms by using Taylor's series. (8)
 - (ii) Find the maxima and minima for the given function $f(x,y) = x^3y^2[1-x-y]$. (8)
- 14. (a) (i) Evaluate $\int x^2 e^x dx$ by using integration by parts. (8)
 - (ii) Evaluate the integral $\int \sin^4 x \, dx$. (8)

Or

- (b) (i) Evaluate $\int \sqrt{a^2 x^2} dx$. (8)
 - (ii) Evaluate $\int \frac{1}{(x^2 a^2)} dx$ by using partial fraction. (8)
- 15. (a) (i) Evaluate $\int_{0}^{\pi/2} \int_{0}^{\sin \theta} [r] d\theta dr.$ (8)
 - (ii) Change the order of integration in

$$\int_{0}^{a} \int_{x}^{a} \left[x^{2} + y^{2}\right] dy \ dx \text{ and hence evaluate it.}$$
 (8)

Or

- (b) (i) Evaluate $\iint [xy] dx dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$. (8)
 - (ii) Find the volume of the sphere $x^2 + y^2 + z^2 = 3^2$ by using triple integration. (8)